Calibrated fMRI in the medial temporal lobe during a memory-encoding task

نویسندگان

  • Khaled Restom
  • Joanna E. Perthen
  • Thomas T. Liu
چکیده

Prior measures of the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) responses to a memory-encoding task within the medial temporal lobe have suggested that the coupling between functional changes in CBF and changes in the cerebral metabolic rate of oxygen (CMRO(2)) may be tighter in the medial temporal lobe as compared to the primary sensory areas. In this study, we used a calibrated functional magnetic resonance imaging (fMRI) approach to directly estimate memory-encoding-related changes in CMRO(2) and to assess the coupling between CBF and CMRO(2) in the medial temporal lobe. The CBF-CMRO(2) coupling ratio was estimated using a linear fit to the flow and metabolism changes observed across subjects. In addition, we examined the effect of region-of-interest (ROI) selection on the estimates. In response to the memory-encoding task, CMRO(2) increased by 23.1+/-8.8% to 25.3+/-5.7% (depending upon ROI), with an estimated CBF-CMRO(2) coupling ratio of 1.66+/-0.07 to 1.75+/-0.16. There was not a significant effect of ROI selection on either the CMRO(2) or coupling ratio estimates. The observed coupling ratios were significantly lower than the values (2 to 4.5) that have been reported in previous calibrated fMRI studies of the visual and motor cortices. In addition, the estimated coupling ratio was found to be less sensitive to the calibration procedure for functional responses in the medial temporal lobe as compared to the primary sensory areas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief Communications Consolidation of Associative and Item Memory Is Related to Post-Encoding Functional Connectivity between the Ventral Tegmental Area and Different Medial Temporal Lobe Subregions during an Unrelated Task

It is well established that the hippocampus and perirhinal cortex (PrC) encode associative and item representations, respectively. However, less is known about how item and associative memories are consolidated. We used high-resolution fMRI in humans to measure how functional connectivity between these distinct medial temporal lobe regions with the ventral tegmental area (VTA) after a paired as...

متن کامل

Changing frontal contributions to memory before and after medial temporal lobectomy.

Frontal recruitment was characterized using functional magnetic resonance imaging (fMRI) during memory encoding in temporal lobe epilepsy (TLE) patients before and after unilateral medial temporal lobectomy. Twenty-four TLE patients and 12 healthy controls underwent a preoperative fMRI session consisting of verbal and nonverbal incidental memory-encoding tasks that typically lead to robust, lat...

متن کامل

Neural correlates of successful and unsuccessful verbal memory encoding.

Recent neuroimaging studies suggest that episodic memory encoding involves a network of neocortical structures which may act interdependently with medial temporal lobe (mTL) structures to promote the formation of durable memories, and that activation in certain structures is modulated according to task performance. Functional magnetic resonance imaging (fMRI) was used to determine the neural st...

متن کامل

Phenotypic regional functional imaging patterns during memory encoding in mild cognitive impairment and Alzheimer's disease.

BACKGROUND Reliable blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) phenotypic biomarkers of Alzheimer's disease (AD) or mild cognitive impairment (MCI) are likely to emerge only from a systematic, quantitative, and aggregate examination of the functional neuroimaging research literature. METHODS A series of random-effects activation likelihood estimation (ALE...

متن کامل

Studying Memory Encoding to Promote Reliable Engagement of the Medial Temporal Lobe at the Single-Subject Level

The medial temporal lobe (MTL)—comprising hippocampus and the surrounding neocortical regions—is a targeted brain area sensitive to several neurological diseases. Although functional magnetic resonance imaging (fMRI) has been widely used to assess brain functional abnormalities, detecting MTL activation has been technically challenging. The aim of our study was to provide an fMRI paradigm that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2008